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Software concept

In order to quickly develop model reduction software for arbitrary
evolution systems, we developed a modularized software concept.

The concept’s key properties are the following:

1. minimally intrusive extension: Enable the rapid exension of a user’s
favorite PDE solver, so it can be used as a reduced basis scheme.

2. software decomposition: High–dimensional computations and low–
dimensional computations can be separated for execution on different
computer architectures.

3. reduced basis library
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Figure 1: Call graph for main software parts in our abstract software concept. High–
dimensional parts can be strictly separated from the low–dimensional ones.

Proof of concept:
•The entire concept was implemented in a MATLAB software package

called RBMatlab (http://morepas.org/software)

•The modules from the tiers I and II were also implemented with the
C++ numerics environment Dune.

•Dune was developed for efficient development of HPC applications.

•The machine learning algorithms for the basis generation during the
offline phase, can be easily parallelized.

Reduced Basis Method
Motivation:
In applications like optimization or uncertainty quantification, numerical simulations must be computed for
many different configurations, control variables or inputs. Reduced basis methods can be used to reduce the
computational complexity in these cases.

Scenario: Parametrized evolution equations
Inputs:

control variable
or parameter

µ

Dynamical system:
usually described by an ordinary differential equation

∂tu − Lh(u;µ) = 0

Outputs:
trajectory or func-
tional evaluation

s(µ;u)

Numerical simulations depend on linear solves of large complexity for every(!) input.
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With machine learning methods (Greedy algorithm, PCA), a reduced basis Φ and an
empirical operator interpolation are derived. This leads to pre–computable low–
dimensional quantities.
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The computational complexity is massively reduced, because the linear solves depend
only on N,M � H for every(!) input.
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Amortization:
Reduced-basis model reduction pays off if

• the application depends on many queries.

• an output must be computed in real time.

Error Estimation:
The approximation error can be controlled effi-
ciently and rigorously with an error bound η(µ):

‖uh(µ)− ured(µ)‖ ≤ η(µ)

Prospective work at Sandia

•With Kevin Carlberg: Improve effectivity of error estimates, incorpo-
rate reduced-basis error estimates as sources of uncertainty in UQ
applications, apply reduced basis methods to Sandia applications.

•With Khachik Sargsyan, Gilbert Hendry: Use uncertainty quantifica-
tion methods, in order to predict the performance of HPC software on
exascale architectures.
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Experiments

Results:
•Numerical experiments were evaluated for problems motivated by ap-

plications in computational fluid dynamics.

•The reduced basis method was applied to linear and non–linear prob-
lems.

•The PDEs were discretized with finite volume schemes on a structured
mesh.

•The reduced simulations preserve important properties like conserva-
tion.
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Time gain:
•Non–linear problems: approximately 1-2 orders of magnitude.

•Linear problem: more than 4(!) orders of magnitude.
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N M ø-run–time[s] max. error offline time[h]

H = 7200 − 90.01 0.00 0

42 83 4.42 1.15 · 10−3 0.96

125 250 8.99 7.43 · 10−6 1.74

208 416 15.64 2.47 · 10−7 2.78

ø-time[s]
H N max. error detailed reduced reconstr. offline-time[s]

16,384 9 8.92 · 10−4 2.9 1.02 · 10−5 0.259 27.82

262,144 11 2.15 · 10−4 621.62 9.33 · 10−4 5.679 6,793.21

32,768 9 3.61 · 10−5 13.75 8.32 · 10−4 1.025 113.85

http://www.morepas.org/software/

Contacts: Prof. Dr. Mario Ohlberger University of Münster mario.ohlberger@wwu.de Jun.-Prof. Dr. Bernard Haasdonk University of Stuttgart haasdonk@mathematik.uni-stuttgart.de
Martin Drohmann Sandia National Laboratories (Dptmt. 8954) mdrohma@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.


